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SUMMARY 
Explicit basis functions are constructed for 9-node biquadratic velocity fields which guarantee that a 
weak form of the continuity equation is satisfied. The corresponding pressure approximations are either 
piecewise constant, piecewise linear or piecewise bilinear. These results are extended to give bases for 
bilinear velocitylpiecewise constant pressure elements and also to some three-dimensional brick 
elements. 
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INTRODUCTION 

The Finite Element Method has been widely used in the last decade, with a mixed degree of 
success, for solving incompressible flows. The failure of certain mixed formulations, many of 
which are analysed in Reference 1, centres around the incompressibility condition and is 
brought about by the incompatibility of the finite element approximants chosen for the 
velocity and the pressure. It has been known for some time that these approximants must 
satisfy what is called the Babuska-Brezzi Because it is a condition that can be 
difficult to verify in practice, depending as it does on the grid as well as the approximants, 
greater emphasis is placed on identifying those elements (and the grids to which they are 
applied) for which it is satisfied. 

In an important paper, Crouzeix and Raviart4 present and analyse several suitable 
approximants on triangular elements. Following on from this work, a technique was 
developed by Griffith~’.~ which enabled element level basis functions for velocities, based on 
these approximants, to be constructed which automatically satisfy an appmximate form of 
the continuity equation. The emphasis in these papers was on triangular elements with but 
one example, using the 9-node biquadratic velocity, discussed briefly for square elements: In 
this paper we shall describe how these techniques can be extended to construct similar 
element level basis functions for a hierarchy of spaces built from a 9-node approximation on 
quadrilateral elements. Examination of these approximately divergence-free basis functions 
reveals that the velocity is composed of small vortex-like structures each contained within 
one, two or four elements. This feature may be used to give a clearer understanding of the 
consequences of changes to either the pressure approximation or the shape of the elements. 

In the next section we describe the necessary framework and specify the problem more 
precisely. The remainder of the paper is then in two main parts. The first part concerns the 
9-node biquadratic element and examines. in turn, the approximately divergence-free basis 

027 1-209 118 11040323-24$02.40 
@ 1981 by John Wiley & Sons, Ltd. 

Received 23 April 1981 



324 D. F .  GRIFFlTHS 

on a uniform grid, the reductions possible to the number of degrees of freedom in the 
velocity, the application to Stokes' flow (with emphasis on the pressure calculation) and then 
the extensions of the earlier results to grids of quadrilateral elements. The second part then 
details the construction of an approximately divergence-free basis for the 4-node bilinear 
velocity element, firstly on uniform grids and then to perturbations of uniform grids. 

STATEMENT OF THE PROBLEM 

In the context of flow problems involving either the Stokes or Navier-Stokes equations on a 
two-dimensional region R, it is natural to take the velocity vector q = (u, u)' to lie in the 
space W of vector valued functions which, together with their first partial derivatives, lie in 
L2(n). For the present we shall assume that each q E W  vanishes on the boundary an of 0. 
The flow is said to be incompressible if q satisfies, at least in a weak sense, the continuity 
equation: 

d ivq=y,+u,=O i n n .  (1) 
It is well-known that any function q E W can be written as the sum of a curl (solenoidal part) 
and a gradient (irrotational part), i.e. 

q = curl 4 + grad 4. 
This implies that the space W can be split into two component parts: 

W=S@I (2)  
where functions in S are solenoidal (satisfying (1)) and those in I are irrotational (satisfying 
curl q = 0). Therefore, from the entire space W, only those vectors also belonging to S are 
candidates for the solution of the momentum equations. Functions in S are easily constructed 
by choosing a stream-function 4 and setting q = curl + = ($y, -QX)=. 

The problem addressed in this paper is that of how this framework can be carried over in a 
convenient and meaningful way to finite element spaces. An obvious way in which this can 
be done is to choose the stream-function +' to be a C'(fl) finite element approximant and 
then set qh = curl 4". TWO reasons for not adopting this approach are (i) C' approximants are 
notoriously difficult to construct on irregular grids of elements and (ii) we anticipate solving 
coupled equations (for example, the Stokes and continuity equations) and the 'optimal' 
solution, for a fixed number of degrees of freedom, occurs when' both equations are satisfied 
to the same precision. 

The region R is 'triangulated' into a number of polygonal elements to give a grid Rh where 
h is some notational measure of the diameter of the elements. We construct, on ah, 
functions qh which are continuous and which reduce to polynomials of fixed degree on each 
element. If some form of mapping is used to transform each element onto a reference 
element then qh will be a polynomial on the reference element. The space, Wh, comprising 
all such vector-valued functions is the counterpart of W described earlier. 

Before we can describe the approximate form of (1) we must introduce an auxiliary space 
of finite element functions, a", called the pressure space. Functions in a' are generally 
discontinuous at element boundaries and reduce to polynomials on each element (the degree 
being different to that for Wh).  A function qh E Wh can now be said to be approximately 
divergence-free (or weakly solenoidal) if it satisfies 

(A", div qh)  = 0 for all A h  E CP" (3) 
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where (. , .) is the usual L2 inner product on a". The degree to which q" satlsfies the 
incompressibility constraint may be controlled by varying the dimension of the pressure 
space a". 

The problem at hand can now be specified more precisely: it is to identify, from among all 
functions in W", those functions which satisfy (3) for a given space @". These weakly 
solenoidal functions constitute a space S" and we may write 

W" =S"@Ih (4) 

where I" is the complement of S" in W". Once S" has been constructed, we can look for the 
solution of the Stokes equation (say) from among the functions in S" rather than the larger 
space W". Functions in I", i.e. those in W" but not in S", do not enter into the calculation of 
the velocity but have a special role to play in the determination of the pressure as we shall 
later show. The dependence of Sh on both Wh and ah will usually be emphasized by writing 
S" =Sh(Wh, a") with a similar notation for I". 

AN APPROXIMATELY DIVERGENCE-FREE BIQUADRATIC BASIS 

In this section iZ will refer to the unit square (0, l)x(O, 1); generalizations to other 
quadrilateral elements will follow in a later section. The grid Ct" is obtained by dividing 
into N 2  equal square elements each of area h2. The space Wh consists of all piecewise 
biquadratic functions on 0" which vanish on ai lh  and which, on a typical element e (see 
Figure l), may be expressed in the form 

where Idi} are the usual (scalar) biquadratic shape functions on e. To distinguish the full 
biquadratic velocity (5) from variations to be introduced below, we write W" = Wt, where 
the subscript refers to the number of degrees of freedom that the velocities enjoy on each 
element. Spaces Sh will be constructed, in turn, corresponding to each of the pressure spaces 
at,@; and @.," where 

@?: constant functions 

a;: linear functions 

CP:: bilinear functions 

on each element. 

For p" E @.," we write 

P " = PXt t- pxx2 4- pyx3 + pwx4 on e 

where the basis functions for the reference element 2 = I -15  5; q 5 I} are 

x l = L  x2=& x 3 = q  and x4=&, 

u 
3 8 L Figure 1. Nodes for the biquadratic approxirnant 
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and the nodal parameters P, PI, P, and Pxy are all identified with the node ‘0’ in Figure 1. 
For p h  E @; set Pxy = 0 and, for ph E @;, set P, = P, = Pxy = 0. 

The fact that each of the basis functions for the pressure space has support on a single 
element means that the incompressibility constraint (3) can be analysed one element at a 
time. For Sh(W;*, @:), mi = 1 , 3  or 4, (3) takes the form 

(x,, div qh), = xJ div qh de = 0, j = 1,2,  . . . , m 

for each element eERh.  
Consider first the case rn = 1. Then qh must satisfy, on each element e, 

div qh de = 0. 5 5  
c 

O n  applying the Divergence Theorem, this becomes 

6, qh . n d s = O  

where n is the unit outward normal vector to the boundary ae of e. Let s k  ( k  = 1,2 ,  3,4) 
denote the side of ae which connects the kth node to the ( k  + 1)st node (mod 4). Then (1 1) 
has a general solution which may be written in the form 

with I,%5 = 4l and the new nodal parameters {I,%,.), one identified with each vertex, provide 
approximations to the stream-function at these points. The integral appearing on the left of 
(12) may be evaluated exactly by Simpson’s rule to give 

These equations, when substituted into (S), eliminate the ‘normal velocity’ component at 
each midside node and introduce the parameters 4; into the representation: 

in which #,+; and $7 are vector valued combinations of the original biquadratic basis 
functions. For example, on 8, 
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Equation (14) gives a local (element level) expression for a general function q" E Sh (W:,, a;), 
i.e. the biquadratic functions which satisfy the 'average mass balance' constraint (10) on each 
element. When contributions to qh  from all neighbouring elements are taken into account, its 
nodal parameters have associated bssis functions whose support is contained on at most four 
elements. Representatives of the basis are sketched in Figure 2 where it may be seen that the 
basis function for $ has a distinct vortex structure encircling the node and the remaining 
functions describe uni-directional flows. It is important to recognize that the expressions 
(13), written for a single element, are compatible with the analogous expressions for 
contiguous elements. This means in particular that they do not destroy the inter-element 
continuity of the global approximant. 

We turn next to the construction of functions in Sh(W!8,@), i.e. those functions of the 
form (14) which satisfy the additional constraints 

c 

Integration by parts gives 

and 

(16) 

ae e 

where qh = (uh, u " ) .  Evaluating these integrals by Simpson's rule and using (13) leads to 

The required functions qh eSh(W;,, @) are obtained by substituting (18) into (14). The 
result is 

4 

9" = 1 ur+r + y+y + $j+,"l+ v&: + u6+: + v7& + u8+E> (19) 

where we have used the same symbols, 4; etc., as in (14) but they now represent different 
functions. In place of (15) we find, again on 2, 

i = l  

1640 2(1 - 5x1 - 7) 

(20) 
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Figure 2. Sketches of the basis functions in S"(Wt,,@?) associated with the 
parameters U, V and .L (at a vertex) and the tangential velocity at a midside node. 
The velocity is zero along the broken lines and the bold arrows indicate velocities at 

nodes 

as examples of the definitions of typical basis functions on a single element. The global 
nature of the basis functions is sketched in Figure 3 where it is seen that increasing the 
dimension of the pressure space has led to an improvement in the vortex structure of basis 
functions associated with vertex nodes whilst those associated with 'tangential' midside nodes 
remain uni-directional (6. Figure 2). 

and gives rise t o  the weakly solenoidal space Sh(W:,,@)3. Functions in this space are 
obtanied from (1 9) by enforcing the additional constraint 

The dimension of the pressure space may be increased still further by replacing by 

5 & divgh de  = 0 
e 

which, on  integrating by parts, becomes 

I <qqh . n d s =  (quh+.$vh)de.  II 
ae 

This equation involves only boundary nodal values of qh. Application of Simpson's rule leads 
directly to  the equation 

v5 - v, + u,- u, +1[- u1 - v, - u2+ v, + u3+ v3+ u,- V4] = 0. (23) 

By grouping the terms in this equation into combinations involving tangential velocities 
along each edge, its general solution may be  obtained in a manner similar to  that for (11). 
Four new parameters ulr u,, u3 and u4 are introduced, one associated with each vertex of 

U V * 
Figure 3. Sketches of the basis functions in Sh(Wts,@:) associated with the 
parameters V, V and @ at vertex nodes and the tangential velocity at a midside 

node 
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the element, through the relations 

329 

which ensures that (23) is satisfied identically for all values of ul, u2, u3 and u4. The factor 
4h is introduced in order that ui correspond to an approximation to hZ Jz$/ax Jy at the jth 
node and u/hZ converges to a finite limit as h + 0. It is interesting to note that if the two 
values of u on any edge of an element are the same, then the tangential velocity along that 
edge is a linear function. Consequently, u is a measure of the departure from linearity of this 
velocity component along the edge. Substituting (24) into (19) eliminates the tangential 
velocity parameters at midside nodes and the result describes a general member of the space 
Sh(W:& a;): 

4 

qh = 1 [q+;+ v;+p+$j+;l+ui+p] 
i = l  

where we have again used the same symbols (+; etc.) to denote basis functions which are 
generally different to those in (14) and (19). In fact, typical basis functions are given by 

4: is identical to that in (15) (26) 

Their global counterparts are sketched in Figure 4. By adding the term & to the pressure on 
each element, the vortex structure of both U and V at vertices has been sharpened 
considerably, that for $ remains unchanged and, what were previously uni-directional flows 
for tangential nodes, have now combined to give a-basis functions having a vortex within 
each element. Comparison of Figures 2 , 3  and 4 clearly shows the focusing effect that the 
pressure space has on the divergence-free properties of the element. 

We feel that it is worth pointing out that the nodal parameters in (25) are the same as 
those which appear in the velocity, qk, derived as the curl of a stream-function based on ~1 FI I.::/::i \ ?  

f l  * 
2 1 > \  4 \1 ? <  ., 

U V U 

Figure 4. Sketches of the basis functions in Sh(W:,, @:) associated 
with the parameters U. V and u at vertex nodes 
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Hermite cubic elements on Oh. There are, however, two major differences between qk and 
the velocity given by (25): 

(i) qk satisfies div qk = 0 whereas the expression (25) is only solenoidal in the sense of (9) 
with m = 4, 

(ii) the basis functions in (25) are biquadratic whereas those for qk are composed from 
functions which are cubic in one variable and quadratic in the other. 
We shall show in a subsequent section that both these representations suffer from a common 
deficiency, namely, that neither is applicable on a grid of arbitrary quadrilateral elements. 

We have now completed the description of all the decompositions of WIs which have a 
local basis. Any further increase in the dimension of the pressure space would no longer 
allow the construction of a basis by looking at a single element. 

In the process of constructing the representations (14), (19) and (25) of functions in 
Sh (W:,, a:), m = 1 , 3 , 4  respectively the independent degrees of freedom removed from w:g 

were 

q!= Us(:)+ V6(i ) -U, ( t ) -  Vs(i), (the normal velocities at midside nodes) 

q: =(I: + (;)&, (centroid velocity) 

and 

q," = d4 v5 (:5) - v6 (t ) - v7( i,) + u8 (t ) 
(the tangential velocities at midside nodes) 

= ( uo)do+ vo ,=s i (?)+,. (29) 

Now, whilst it is true that every function from Ih(W:8, @k) is of the form qk, the converse is 
not, since, particular values of the nodal parameters in (27)-(29) give the basis functions 4'' 
and 4' which lie in Sh(Wt8,@:) (see, for example, equations (15), (20) and (26)). This 
property is unavoidable but, fortunately, can be used to advantage (see section on the Stokes 
equations). Note that the velocities in Ih  are weakly irrotational in that JJ, curl qh de = 0. 

MODIFICATIONS OF THE BIQUADRATIC BASIS 

The preceding section detailed the changes in the approximately divergence-free basis 
brought about by changes in the pressure space. We turn now to the question of how the 
biquadratic basis itself may be changed whilst maintaining both inter-element continuity and 
the divergence-free character. The dimension of the velocity approximation may be reduced 
by using a technique suggested by Grfithss." whereby the tangential velocity is constrained 
to be linear along each edge of an element whilst the variation in the normal velocity remains 
quadratic. For the element shown in Figure 1 the relevant reduction can by accomplished by 
setting a, = 0 ( j  = 1,2,3,4)  in equations (24). The space of velocity functions which results 
when these expressions are substituted into ( 5 )  will be denoted by Wk, since each function 
now has fourteen degrees of freedom on each element. 

To construct the weakly solenoidal space Sh(Wy4, 4;) we simply substitute equations (24) 
(with a, =0) into (14). The resulting basis functions (with the exception of the tangential 
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midside node which is now absent) differ only marginally from those depicted in Figure 2. 
The construction of Sh(W:4, @) is even more straightforward since it involves only the 
setting of W, = 0 ( j  = 1,2,  3,4) in (25) .  Apart from the absence of the u-basis function, the 
sketches shown in Figure 3 continue to apply (the remaining basis functions are identical in 
the two situations). 

For the element shown in Figure 1, the velocity qh = ( u h ,  u h ) T ~ W : 4  is such that u h  is 
linear along edges 14 and 23 whilst u h  is linear along 12 and 34. This suggests that one way 
of removing the degrees of freedom associated with the node '0' is to assume that uh is linear 
in x and v h  is linear in y throughout the entire element. This means setting 

U o = $ ( U , + U , )  and Vo=i(V6+V,).  (30) 
The number of degrees of freedom on the element is therefore reduced to twelve leading to 
the space Wt2. The only weakly solenoidal space that can be constructed on W:, is 
Sh(Wk2, @) using piece-wise constant pressures. Typical functions on Sh(W:2, @) may be 
constructed either directly using equations (13) or by substituting expressions (30) into the 
representation for qh E S ~ ( W : ~ ,  a:). 

The various weakly solenoidal functions which can be constructed from either W!, or the 
reduced biquadratic spaces Wt4, W!, are listed in Table I along with the transformations 
which connect them. The relative dimensions of these spaces can be assessed in terms of the 
auerage number of parameters per element. For example, qh E W:, has a total of 2(2N-  1)' 
parameters on Oh and, consequently, 2(2N - 1)'/N2 parameters per element. For large 
values of N this gives an asymptotic value of eight parameters per element. Likewise, W:, 
and Wt, have an average of six and four parameters per element respectively. The 
asymptotic dimensions of all the possible spaces are given in Table 11. 

The data in Table I1 serves as a useful guide when these elements are used, for example, to 
solve the Stokes equations (see next section). I f  N1, N2 and N3 denote, respectively, the 
average number of parameters per element for Wh,Qh and S h ( W h , Q h )  then the Lagrange 
multiplier formulation leads to a system of linear algebraic equations (in velocity and 
pressure) of dimension proportional to N1 + N2. When the same elements are made weakly 
solenoidal by constructing Sh (Wh, ah), the dimension of the algebraic system (for velocity 
only) is proportional to N3,  the constant of proportionality being the same in both cases. 

Table I. The underlying velocity spaces W?8, W:, and W:, and the 
various approximately divergence-free spaces that can be con- 

structed from them 

Centroid reduction) 
(equation (30)) I 
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Table 11. T h e  average number of 
parameters per element for the vari- 
ous spaces, given in the form 

N1+N2 where N1, N 2  and N3 are 

the average numbers for W", Qh and 
sh(wh, O h )  respectively. 

N3 

8 + 1  8 + 3  8+4 
7 5 4 

6 + 1  6 + 3  
5 3 

W:, 

w:, 

w:, 4+1 
3 

Thus, the ratio N,/(N,+N,), which ranges from down to $, gives an estimate for the 
reduction in the overall number of degrees of freedom in the system made possible by 
ensuring that the elements are weakly solenoidal at the outset. 

A more physical interpretation of the data in Table I1 is that, of the available (N, )  degrees 
of freedom in the velocity, N2 are absorbed into satisfying the incompressibility constraint 
leaving N 3  degrees of freedom with which to solve the momentum equations. One may 
conjecture that the spaces Wh and Qh are 'balanced' if N2 and N3 are nearly equal; this 
occurs when using either 'P: or at. With only piecewise constant pressures (a!), the ratio 
N3 : N2 is at best 3 : 1 which would seem to us to be too unbalanced. 

SOLUTION OF THE STOKES EQUATIONS 

In Stokes flow, the velocity (q) and the pressure (p) satisfy the equations 

-V2q+grad p = f  in R, (31) 

divq=O in R (32) 

q = O  on an. (33) 

and 

We have chosen to use homogeneous boundary data only for definiteness at this point; we 
shall, at the opportune time, also describe the treatment of alternative boundary conditions. 

If we define the bilinear form 

a ( w , q ) =  !![grad w,.gradq,+grad w,.gradq,]dR 
n 

(34) 

for q = (ql, q2)' and w = ( w ~ ,  w ~ ) ~ ,  then the Lagrange Multiplier formulation of the finite 
element solution of (31)-(33) takes the form 

Find qh E Wh and ph €'Ph such that 

a (wh, qh) - (div wh, p") = (wh, f), for all wh E Wh (35) 
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and 

(Ah;divqh)=O for all A h € @ ' .  (36) 
It is well known that both the continuous and discrete systems also require that the pressure 
be specified at one point in R in order that the solutions be unique. The relationship between 
the Lagrange multiplier equations ( 3 5 ) ,  (36) and certain penalty methods using reduced 
integration is explored by Sani et al.' 

If the approximately divergence-free forms of the space Wh are used, equations (35 )  and 
(36) are replaced by: 

Find qh €Sh(Wh, ah) such that 

a(wh, qh) = (w", f) for all wh €Sh(Wh, Qh). (37) 
In this way the computation of the velocity is completely separated from that of the pressure. 
Because the functions in Sh(Wh, ah) have been given explicitly on each element, the normal 
procedures for assembling finite element equations may be used. The linear independence of 
the basis functions together with the ellipticity of a(., .) ensures that the coefficient matrix 
arising from (37) is positive definite. The resulting linear algebraic equations consequently 
have a unique solution which, when solved by direct elimination methods, require no 
pivoting. 

Once the velocity has been computed from (37), the pressure follows from the equations 

(div w", ph) = a(wh, qh)-(wh, f)  (38) 
where wh ranges over functions which are in W" but not in Sh(Wh, Bh), i.e. over all wh E 1'. 
Such functions are listed in equations (27)-(29). 

To describe the pressure process in more detail, we consider the patch of four elements 
shown in Figure 5 and each of the pressure spaces a:, m = 1 , 3 , 4  in turn. 

The pressure p" E @: 

ph is a constant on each element of the patch and we denote by Pi its value on the jth 
element. Suitable vectors wh are given in equation (27); we begin by taking W" = (&, O)T (& 
is the usual biquadratic basis function for the node M ,  of Figure 5) .  In this form, wh is 
normal to the edge at MI; this is not essential, the only proviso is that wh should not be 
parallel to the edge for then it would belong to Sh(Wh,@?). The pressure calculation is 
virtually identical for each of the velocity spaces W:8, W:, and W:, so we shall suppress the 
subscript and write simply W". With W" = (&, O)T equation (38) becomes 

( Pl - Pz) h = a (wh, qh)  - (W ', f) (39) 

4 

Figure 5 .  A patch of four elements for describing the calculation of the 
pressure approximation 
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from which P2 may be computed in terms of PI. Repeating this process with wh = 
(0, 4JT, (-&, O)T and (0, -&4)T allows the calculation of Pz -P3,  P3 - P4 and P4- P,  
respectively. Therefore, starting with any given value for PI (the hydrostatic level), we can 
use these four equations to determine, in turn, the values of P2,P3,P4 and then P,. It is 
clearly essential that the original and final values for P, should agree. Reference to equations 
(14) and (15) reveals that the sum of the four wh functions so chosen combine to form the 
basis function &* €Sh(Wh, a;). The sum of the four equations derived for the pressures 
therefore gives equation (37) with w h  =+". The values of the pressure are therefore 
consistent. By extending this marching process to the entire grid, the pressure may be found 
on each element in terms of the arbitrary (hydrostatic) value chosen in the first element. In 
the terminology of Sani et uf.,' this element exhibits a hydrostatic pressure mode. Precisely 
the same process applies if q assumes non-zero values on aR (see (33)). There should 
perhaps be a word of caution regarding the way in which these boundary values are 
incorporated into qh. To ensure overall consistency, the net mass flux of qh across anh should 
agree with that of q,  i.e. 

When applying the boundary conditions to qh, values at vertex nodes and tangential 
components at midside nodes are interpolated in the usual way. The normal component of qh 
on an element edge, E (lying on a i l h ) ,  is determined from 

(41) 

and the integral on the left may be evaluated by Simpson's rule. We have found that 
interpolation of the normal component of q along smooth edges of the boundary &Ih causes 
no ill effects, it is near corners (as, for example, in the driven cavity problem) that care has to 
be taken to match the fluxes across element edges. Note that (41), together with (12), 
determines the nodal values I++ on the boundary to within an arbitrary constant, which may 
be taken to be zero (if R also has an internal boundary, enclosing a 'hole', the nodal values 
of # are taken to be equal on it). 

If the boundary conditions are altered so that the normal component of q is not specified 
on the entire boundary, for example, if it is not specified along the edge including node Ms 
of Figure 5, then the vector wh = (&, O)T enters the trial space Ih. When this particular 
choice for wh is substituted into (38) the value of PI is determined uniquely; the hydrostatic 
mode has been eliminated. 

The pressure ph E 

ph now has the form 

p h  = P, +(x -xj)Pz,  + (y - y,)P,, on the jth element (42) 
where (x,, y,) are the co-ordinates of the centroid of this element. It is seen from (28) that 
changing the pressure space from introduces the two new functions wh = (&, 0)' 
and (0, into the test space ('0' refers to the centre node of any element). Substituting 
these functions wh into (38) leads to 

to 

(43) --& 4 2  PXj = a(wh, qh)-(wh, f), Wh = (&o, O)T 
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and 

%h2Pyi = a(wh, qh) - (Wh, f ) ,  wh = (0 ,  &)T 
from which Px, and P,,, on element j ,  follow immediately. The difference in the hydrostatic 
levels P,,, -PI between two adjacent elements is computed in the same manner as for @; 
except that the analogue of equation (39) includes a known term involving P,,, , - Px, (for a 
horizontal edge the additional term would involve P, ). Changes to the boundary conditions 
d o  not affect the computation of either P, or P,. 

The pressure p h  E @:. 

p h  has the form 

P h  = p, +(x- rS)PLl +(Y - Y,)P,, +(x -THY - Y,)PX,, (45) 
in the same notation as (42). It turns out that the equations which determine P,, Px, and P,, 
are precisely the same as those for Ph E a:, this means these parameters are completely 
independent of the values of the parameters Pry on the grid. Inspection of (29) reveals that 
the Px, parameters may be found from (38) where w h  ranges over all the tangential velocity 
basis functions at midside nodes. If, in the setup depicted in Figure 5, we take wh = (0,  4JT, 
it follows from (38) that 

The structure of this equation is the same as (39) for the hydrostatic component and it 
follows that 

(i) There is no way in which the value of Pxy can be determined in the first element. The 
value of Pry in subsequent elements is obtained in terms of that in the first as the marching 
process is continued. This arbitrariness in Pxy is the manifestation of the so-called ‘checker- 
board’ (CH) pressure mode that this element is known to have (note that the contribution 
that Pxy makes to the pressure ph on each element has * values at the 2 x 2  Gauss points). A 
‘pressure filter’ is developed in Sani et al.’ in order to remove the unwanted mode; in the 
context of the present formulation this is equivalent to  setting PI, = O  in each element. 

(ii) Using the fact that functions in Ih combine to form basis functions 4’ and 4‘ in Sh, it 
can be shown that the values of PI, on the grid are self-consistent. 

(iii) If the boundary conditions are modified so that the tangential component is not 
specified at  all points of the boundary (for example, the edge containing node MS in Figure 
5) then wh = ( O ,  4JT enters the test space and, when it is substituted into (38), the 
arbitrariness in the CB mode is removed by fixing the value of PXyl uniquely. 

THE EXTENSION TO QUADRILATERAL ELEMENTS 

U p  until now we have limited the discussion to a square element, not only because of the 
simplification that ensues, but also because we feel that the results may be useful in this 
form. When dealing with a more general quadrilateral element, e, (see Figure 6) a bilinear 
transformation is used to map it onto the reference element 2 ={-1 St,  q 5 1) in the usual 
manner. We number the sides s,, . . . . s4 of e as in (12) and we denote by N, ( j  = 1,2, 3.4) 
the outward normal vector to side s,, normalized so that IN,] = L,, the length of s,. 

The problem now is to determine whether or not analogues of the representations (14), 
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a b 

Figure 6 .  A general quadrilateral element (a) and the reference element 
(b). Also shown are the normal vectors N, 0’ = 5,6,7, 8) before and after 

translation 

(19) and (25) exist in this more general situation, or, equivalently, to determine whether the 
parameter transformations (13), (18) and (24) may be generalized in such a way as to 
preserve inter-element compatibility. A similar problem arises for triangular elements and 
has previously been resolved by Griffiths.s.6 

Let Tj (j = 1,2,3,4)  denote the vector parallel to the side s;, directed in a counter- 
clockwise direction and normalized so that ITj/ = L;. The heavy dependence on normal and 
tangential velocity components suggests that we use q& and q&, as the degrees of freedom at 
a midside node j in preference to the Cartesian components U,. and V;; these parameters are 
related through 

Some caution has to be exercised since the outward normal at a side of one element is the 
inward normal to the contiguous element which shares that side. Similarly, the sense of the 
tangential vector is reversed. There is no difficulty if the vectors N, and Ti are assigned 
unique senses on side s, of the grid and the basis functions suitably modified by the inclusion 
of f signs. 

If {4;((, q)} denote the usual biquadratic basis functions on 2, the basic representation of 
qh E W:, is 

which reduces to (5) when e is square. 

The spaces Sh(Wh, @) 

The ‘average mass balance’ equation on e, generated by piecewise constant pressures, is 
still given by (10). The general solution, obtained in an entirely similar vein to (12), is given 
by 

qNk = - j ( Q k - 4 + Q k - s )  .Nk +$($k+-$k-s) ,  k = 5 , 6 , 7 , 8  (49) 

where Qj = (U,, y)T (j = 1,2,3,4) ,  Qo = Q, and = q4. Substitution of (49) into (48) gives 
the representation of qh cSh(W:,, a:) which generalizes (14). It is a straightforward matter 
to verify that (49), for side sk, is identical to the corresponding expression obtained by 
solving on the mass balance equations on a contiguous element which shares that side. 
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The tangential velocity can be constrained to be  linear along each edge of e simply by 

Equation (48) together with (50) gives a general function in W!4, whilst (48) with (49) and 
(50) represents a general function in Sh(W:4, a:). We have not pursued the generalizations of 
w 2 .  

The spaces Sh(Wh, at). 
Equations (16) (or 17) continue to  be the relevant forms of the additional constraint on  a 

quadrilateral element e. By transforming the integrals on 6 and evaluating them by 
quadrature (Simpson’s rule continues to  give the exact values since the Jacobian of the 
transformation is bilinear in 5 and q on i), expressions are obtained which may be solved for 
U ,  and V, in terms of the remaining parameters of the element. The appropriate constraints 
can, in this way, be satisfied on each element and lead to a representation of qh E S ~ ( W : ~ ,  a:) 
which takes the form (19) with V,, U,, V, and U ,  replaced by qTS,.  . . , qrs respectively. 
Figures 2 and 3 now give only a general impression of the vortex structures on irregular 
grids. ‘Tangential reduction’ (the constraining of the tangential velocities to  be linear) can be 
applied simply by substituting (SO) into the representation of a general function from 
Sh(W:8, a;); the result is a function in Sh(Wt4, a:). 

When the integral appearing in the constraint (21) (or 22) is evaluated it is found to 
depend solely on nodal parameters of qh connected with the boundary nodes of e. 
Unfortunately, the coefficient of each boundary parameter involves, in general, properties of 
the element geometry which are not local to the side on which it lies (cf. equations (10) and 
(1  1)). This means that it is not, in general, possible to construct a general solution for (21) on 
e which would be compatible with similar solutions on contiguous elements. Although we 
cannot rule out the possibility that there may be  particular irregular grids which would allow 
a local solution of (21), we believe that this constraint can only be satisfied, compatibly with 
neighbouring elements, if the mapping relating e to i is affine. Requiring the mapping to  be 
affine would, in turn, restrict the grid to be composed entirely of parallelograms (including, of 
course, rectangular and square) elements. An appropriate solution can be indeed be 
constructed on  such grids. 

THE BILINEAR VELOCITY-PIECEWISE CONSTANT PRESSURE ELEMENT 

We now examine a way in which the above technique for constructing weakly solenoidal 
basis functions can be applied to the 4-node velocity element. The  technique that we have 
described is not immediately applicable because of the absence of midside nodes for this 
element. This difficulty is circumvented by considering a macro-element built from a patch of 
four neighbouring elements (Figure 7). The general principle applies equally to quadrilateral 
macro-elements though we shall consider only the case when they are square. There is no 
loss therefore in assuming that e = {-h 5 6, q 5 h}. The velocity, qh, on e is still given by the 
general form (5 )  but the basis functions {+} are now piecewise bilinear on e. For example, 

b, -- { ;;ih2. in element ‘1’ 
in elements 2,  3 and 4 
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I 

5- 

1 
3 8 1, Figure 7. A macro-elemen:, e, for the 4-node bilinear velocity 

The conventional representation for the pressure on e would be in terms of the charac- 
teristic functions of each sub-element (i.e. the functions which take the value unity on one 
sub-element and zero on the remainder), but this is not convenient here. The techniques 
which were developed for the biquadratic element above can be applied directly if we choose 
the basis functions for @ on e to be 

x1 = 1, x2 = sgn t, x3 = sgn r̂l and x4 = x3x4, (5 1) 
where 

+1 for t > O  
-1 for t<O' sgn 6 = 

Employing the same symbols as before for the various function spaces, then the problem is to 
extract, from W;8, an approximately divergence-free basis satisfying 

divqh de =0, j =  1,2 ,3 ,4 .  I I  
c 

Aithough it will prove possible to construct the analogues of all the spaces listed in Table I, 
our primary concern here is with the space S"(W:,, a:). 

We shall exploit the similarity between (52) and (9) to the full. What we require, therefore, 
are the analogues of equations (13), (18) and (24). This involves a repetition of the previous 
construction with the obvious changes to the underlying basis functions (c$~} and {xk}. 
Integrals which were previously evaluated by Simpson's rule on (each edge of) e are now 
evaluated using the Trapezoidal rule on (each edge of) the sub-elements of e. The analogues 
of (13) and (18) can then be shown to be 

and 

(54) 



9-NODE VELOCITY ELEMENT 339 

Finally, it can be shown that the general solution of ( 5 2 ) ,  with j = 4, is given by (24) (with no 
modifications). The ‘tangential’ and ‘centre’ reduction of w:, to W:, and W:, remain as 
before. By appropriate choices from among these expressions it is possible to construct bases 
for all the spaces listed in Table I. 

We are particularly interested in the representation of functions in Sh(W:,, 4:) so that we 
may use them in the next section. By substituting (53), (54) and (24) into (5) we obtain 

The vortex structure of each of the basis functions in (55) is depicted in Figure 4, 
This element may be applied to the Stokes equation with no essential changes. The main 

conclusions remain valid and the most important of these are 
(i) The pressure exhibits a spurious non-physical mode on a uniform grid. This mode, 

being due to the basis function x4, clearly has a checkerboard pattern: +1 on red squares and 
-1 on black squares. Application of the pressure ‘filters’ recommended in Reference 1 is 
equivalent to setting the coefficient of x4 to zero on each element. 

(ii) There is, in general, n o  local basis for Sh(w:8, @:) on an irregular grid of quadrilateral 
macro-elements. The obvious exceptions are grids of parallelograms although we believe, but 
have been unable to show, that a local basis can be found for grids satisfying the geometric 
condition (12) of Reference 1. 

(iii) The arbitrary amplitude of the spurious CB pressure mode is removed if the boundary 
conditions are such that the tangential component of velocity is not prescribed at all points of 
the boundary. 

Johnson and Pitkaranta’ give a theoretical convergence analysis of the element when it is 
used for Stokes flows. They prove that if qhESh(W:8,@:) on a regular grid, then the 
velocities converge at the rate O(h2) and the pressure at O(h) ,  both results being for the 
respective L2 norms. 

THE ‘TWEAKED’ NODE PROBLEM 

A problem is described by Sani et al.’ in which one node, of an otherwise uniform partition 
of the unit square into N 2  square elements, is perturbed a distance O ( E )  where E is small. It 
was discovered experimentally, and substantiated by a perturbation analysis, that when the 
bilinear velocity-piecewise constant pressure element was used to solve Stokes flow on this 
grid, small E-perturbations to the grid could cause 0(1) and O(E-’) 
perturbations to the velocity and pressure fields respectively. In order to demonstrate the 
effects of this type of grid perturbation on the approximately divergence-free basis we 
consider a patch of four macro-elements as shown in Figure 8 wherein the co-ordinates of 
the centre 0 have been perturbed from ( 0 , O )  to ( E  cos 6, E sin 6). It can be shown that 
qh ES‘(W:,, @) satisfies the incompressibility constraints (52) on each of the macro- 
elements if 

(i) it has the representation (55) on  each macro-element ({+,} and {m,} are defined by (53) 
and (24), as for square elements). The basis functions +: etc. depend continuously on E and 
8, 
and 

and 

(ii) qh satisfies the further constraint (see also equation (67) of Reference 1) 
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h 

I 

3 a L Figure 8. A patch of four macro-elements surrounding a ‘tweaked’ node 

where N = (sin 8, -cos 0) is a unit vector perpendicular to the direction in which the node is 
displaced. 

The constraint (56) clearly vanishes identically when E = 0 but otherwise the parameters, 
and consequently the basis, must be adjusted in order to ensure its satisfaction. By defining 
T = (cos 8, sin 8) the general solution of (53) may be written in the form 

qg” + q:l - q:, - q:2 = a T, Q arbitrary (57) 
which, upon using the appropriate equations from (53) and (24), becomes 

When this expression is substituted into the velocity representation on the patch we obtain, 
for the most general function satisfying (52) on each macro-element, 

where 

& = $[4: cos 8 -& sin 81 (60) 
and the remaining basis functions +y etc. are linear combinations of the earlier divergence- 
free bases for macro-elements. qh, as given by (591, is easily shown to be compatible with 
representations of the form (55 )  which hold for macro’s outside this patch (for all values of E 

and 8). 
A number of important conclusions can be drawn from this representation. 
(i) The velocity on the tweaked patch has one fewer degree of freedom compared to the 

velocity on an untweaked grid. By tweaking the centre node the two parameters U ,  and V, 
combine to give a single parameter a; it has only a local effect on the basis. The basis 
function +; represents a double vortex (cf. Figure 4 for U and V) with its axis parallel to the 
vector (cos 8, -sin 8). 

(ii) The effects on the velocity of tweaking a node for Stokes flow for a fixed value of h 
may be analysed by perturbation methods in linear algebra (see Reference 1). From such an 
analysis one can indeed conclude that an &-perturbation to the grid can produce an 0(1) 
perturbation in the velocity unless the velocity on the untweaked grid also satisfies (56) with 
E # 0, this is unlikely to occur if the grid is coarse. 

(iii) The velocity on the tweaked grid is obtained by solving either (37) or the pair (35) and 
(36). In both cases the resulting field is represented by (59) on the patch and (58) can then be 
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used to deduce the velocity at the patch centre from the values of the parameters on the 
boundary of the patch. If the parameter values on the patch boundary are approximations of 
the corresponding continuous variables, then Taylor expansion of the right-hand side of (58) 
reveals that ( ffo, V,) converges to the required velocity at the centre provided that a 4 0 as 
h -+ 0 (the ratio E/h must remain finite for otherwise the elements overlap). In fact, we 
obtain ( u o ) = - ( .  cy cose  )+(-:)-2( '-"')+0(h2) 

-Vo 2 sin 6 -v - 4 x  
where u, v and 4 are the continuous functions to which the boundary parameters are 
presumed to converge. Thus (U,, V,) (u, v), as h -+ 0, provided that q = (u, u ) ~  = 
curl @ and a -+ 0. This analysis shows, for instance, that the interpolant to q from Sh(W:g, @:) 
converges as h 3 0. The implication is that the O( 1) perturbation in E referred to in (ii) is in 
fact an O(h)0(1) perturbation as h -+ 0. This behaviour has been observed in numerical 
experiments.' 

The pressure for this problem is computed from (381 where wh ranges over all functions in 
the complement of the approximately divergence-free space. Tweaking the node as we have 
seen removes one function from this divergence-free space and this has to be compensated 
for by adding one to the complement. The appropriate function is 

+,=&sine++t;cose. (62) 
Without this function, equation (38) determines the pressure as for a uniform grid, that is to 
say, the coefficients of both PI and PXy1 are undetermined; there is a hydrostatic and a CB 
mode. Substituting (62) into (38) gives 

which fixes the amplitude of the CB mode uniquely. If the grid perturbation causes only a 
small perturbation of the velocity (e.g. if the grid is fine enough) then, since lies in the 
approximately divergence-free space on a uniform grid, the right-hand side of (63) is small 
by virtue of (37). The amplitude of the CB mode in this case may not, therefore, be unduly 
large. On the other hand, if the grid is too coarse, the grid perturbation leads to O(1) 
changes in the velocity and the right-hand side of (63) is no longer small. One can expect 
therefore that the amplitude of the CB mode will be O(8-l). 

The close parallel which exists between this macro-element and the 9-node biquadratic 
element suggests that the latter also has a similar behaviour on a tweaked grid. Finally, in 
this section, we note that this is not the only macro-element which can be analysed in this 
way. For example, each of the square sub-elements in Figure 7 could be split into two 
triangular sub-elements on which the velocity would be piecewise linear. The pressure field 
would continue to use the four basis functions (51) since it is well-known that the use of a 
pressure field which 'is piecewise constant on triangles leads to a locked system in which the 
constraints outnumber the degrees of freedom. 

CONCLUSIONS 

We have attempted, in this paper, to describe a new way of assessing and analysing finite 
element approximations to incompressible flows. The essential ingredient that we require, 
which is not new, is that the pressure approximation be defined independently on each 
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element, This creates jump discontinuities in the pressure across element boundaries (the 
pressure still lies in L2) but it allows a local, element-level, basis to be constructed for weakly 
solenoidal velocity fields. 

It is not,  as yet, clear whether the computational procedures based on these basis functions 
would be more cost-effective than the orthodox Lagrange multiplier method (or indeed, 
penalty methods) although both methods would give identical results when used with the 
same underlying approximate function spaces. On the one hand, the use of an approximately 
divergence-free basis reduces the number of active degrees of freedom in the system 
(measured in terms of the dimension of the system of linear algebraic equations which have 
to be solved) by as much as a factor of three (see Table 11) and, for Stokes’ flows, the matrix 
of coefficients is symmetric positive-definite which therefore precludes the need for any form 
of pivoting in direct equation solvers. However, these features are, at least partly, offset by 
the fact that the bases are vector-valued functions and therefore, one presumes, more costly 
to implement (the actual number of such basis functions is fewer than for either the Penalty 
or the Lagrange multiplier method and it is, therefore, no foregone conclusion that our 
approach is more costly). The potential savings brought about by using these new basis 
functions are much greater for time dependent problems since the pressure does not need to 
be computed at each time step but only at those time levels that results are output. The 
elements can, of course, be implemented without change to the full Navier-Stokes equations. 

A physically appealing feature of the basis functions we have constructed is that each 
represents a local ‘vortex-like’ structure supported on one, two or four contiguous elements 
(Figures 2, 3 and 4). Through these structures a clearer picture emerges of the effects of 
changing the pressure approximation and the shape of the elements. Another interesting 
feature is that it allows an interpretation to be assigned to the roles played by the various 
nodal parameters in the approximation: normal components of velocities at midside nodes 
control the flux across element edges (also the discontinuity in pressure across a boundary), 
internal nodes control the creation/destruction of mass within an element (also the gradient 
of the pressure in the element) and the remaining nodes are free to approximate the 
momentum equations. 

By combining four elements to form a macro-element, we have been able to construct an 
approximately divergence-free basis for the 4-node bilinear velocity-piecewise constant 
pressure element. Although the basis has a local character, the fact that macro-elements are 
needed means that it cannot be expressed on a single element. By looking at small 
perturbations of regular grids we have been able to show that the macro-bilinear velocity-3- 
node pressure element (or, equivalently, the biquadratic velocity-linear pressure element) is 
relatively insensitive to such perturbations. However, increasing the number of pressure 
parameters per element to four can have due consequences if the grid is not uniform 
(parallelograms) or if the grid is not sufficiently fine. This sensitivity to perturbations of the 
=grid is not really so unusual. It can be likened to the failure of Hermite cubic elements to 
maintain inter-element continuity on irregular grids (using a bilinear mapping of quadrila- 
teral elements onto the reference element). The equivalence of our approach to the 
Lagrange multiplier formulation using the same approximants means that these conclusions 
apply also to that scheme (and, to a lesser extent, to certain penalty methods with reduced 
integration *). 

Since concluding this work, a recent paper by Fortin’ has come to our attention in which, 
by a somewhat different route, he arrives at the same ‘vortex-like’ structure for describing 
the local flow. We take this as confirmation that this is indeed a good way to analyse 
finite element approximations of divergence-free flows. Briefly, the main difference in the 



9-NODE VELOCITY ELEMENT 343 

two approaches is in the way the element mass balance equation, (lo), is satisfied. In our 
treatment, this is done by introducing a stream-function parameter at each vertex node 
whereas Fortin eliminates the normal component of velocity at a midside node by static 
condensation when two contiguous elements are assembled. Fortin goes further and ex- 
amines several three-dimensional elements in a similar way. This has prompted us to extend 
our technique and an example of a three-dimensional element is presented in the Appendix. 

APPENDIX 

Three-dimensional elements 

Let i denote the reference cube (-1 I& q, 5 5 1) to which every cubic element in a regular 
grid Rh may be transformed by a translation and a scaling. The eight vertex nodes of 2 are 
numbered as shown in Figure 9 and the six faces of the cube F,, Flo, . . . , F14 are labelled so 
they correspond, respectively, to the planes 6 = +1, q = +1,5 = +1,[ = -1, q = -1, and 
{ = -1. Let ni ( j = 9 , .  . . , 14) denote the unit normal vector to face 6 oriented in the 
direction of olie of the co-ordinate axes (e.g. i113 = (0, 1,O)).  In the simplest of Fortin's 3D 
elementsg (QT-P") the velocity in 2 is represented by its three Cartesian components at 
each vertex and by its normal velocity component on each face: 

where {4i} are the usual trilinear basis functions for i and 6; ( j  = 9, . . . , 14) is the 'bubble' 
function for the jth face F,. For example, 

41 = Qc I.+ "1 + rl)( 1 + 5 )  

69 = 1(1+ tN1- q2)(1 - 5'). 
and 

Note that 6, vanishes on all faces apart from F, and it takes the value unity at the ninth 
node. With this basis, the parameters v; are 'corrections' to the normal component of 
velocity at the centre of the jth face. For instance, the normal velocity at the ninth node, 
lying on F,, is 

1 - f y + v 9 .  
4 ; q  

Figure 9. The reference element in 3D 
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When the pressure approximation is constant on each element, the velocity need only 
satisfy the element mass balance equation: 

J J div qh de = 0 
e 

which integrates to give 

where II is the unit outward normal to i at F,. To solve the analogous constraint (10) in two 
dimensions, we made use of the property of a stream-function: the difference between the 
values of the stream-function at two points A and B is equal to the flux across any curve 
joining A to B. In three dimensions the corresponding result is: the flux across any surface F 
(bounded by a closed curve r), is equal to the integral, taken around r, of the component of 
the stream-function Jr parallel to r. Applied to the contribution to (66) from Fg for instance, 
this gives 

where t is a unit vector tangent to the boundary, dFg, of Fg directed counter-clockwise. If we 
now define tii to be a unit vect0.r in the direction of the edge E,, connecting the ith to the jth 
node, the right-hand side of (67) becomes 

Jr . tI2 dt + Jr . tZ3 dt + I Jr . t34 d t +  I, JI . t41 dt. I,, I,, 34 

There are now two (roughly equivalent) ways of proceeding. In the first of these we let ail 
denote an approximation to JE,, Jr . ti; dt, for each i and j (note that a,] = -aj,). Now, evaluating 
the integral on the left of (67) using (64) gives, for Fg, 

with a similar expression for each of the other faces. When these expressions are used to 
eliminate ug, . . . , u , ~  from (64), we obtain, as the representation of a general function qh on 
6 satisfying (65), 

in which 
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and the remaining basis functions are defined similarly. Of these basis functions, only those 
connected to ‘a’ parameters are not uni-directional. In fact 4: has a rudimentary vortex 
structure which encircles the edge E,, (see Figure 10). The support of this basis function is 
the 2 x 2  block of elements which share the edge E,,. 

The representations (64) and (69) have, respectively, 30 and 36 parameters on each 
element but, on an assembled grid of elements, they both have an asymptotic average of six 
parameters per element. 

In the representation (69), the parameter a,, is a mid-edge node. Such nodes are often 
regarded unfavourably from a practical point of view. Mid-edge nodes may be avoided, 
however, provided we use approximations to the stream-function Ji at each vertex node 
k. A typical line integral from (67), jE,, \Ir . t, dt say, is approximated by (Yg +4,) . for each 
edge of &. Thus, if Y, = (4:, Y;, Y:)T, equation (68) is replaced by 

i Lr, +$vg = 44; +4:) - (4; +Yy:) + (4: + Y!) + (Yi+4?). (68’) 

We should emphasize that (68) and (68’) (with their counterparts for the remaining faces) 
provide different, but equivalent, exact general solutions of (65) even though they involve 
approximations of line integrals. Both these general solutions are compatible with similar 
solutions on contiguous elements. 

In contrast to (69), the approximately divergence-free velocity on & now has the form 

J = 1  

where the basis functions {+:}, I+;} and {+r} (for a single element) are the same as those in 
(69) and the ‘4’ basis functions are simply related to those of the ‘a’ parameters in (69). For 
instance, 

+; = +; = -+[2. (70) 

Although the form (69‘) clearly involves 48 parameters on each element, asymptotically, 
the.average number of parameters per element is the same as for (69). (Even though the 
‘eleqent stiffness matrix’ for (69’) is 48 x 48, it is effectively only 36 x 36 since, by virtue of 
(70), the remaining coefficients need only be copied into the correct positions.) For each 
component of 4, the global basis functions are supported on the eight elements which meet 
at a vertex and represent twin vortices, each having the form shown in Figure 10, with their 
axes colinear . 

Figure 10. The vortex-like structure of Q& (cf. Fortiny Fig. 2.8) 
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By a similar process, element level basis functions may be constructed for all the 3D 
schemes proposed by F ~ r t i n . ~  In each case it is only the evaluation of the integrals on the left 
of (66) that require modification; the counterparts of (68) can still be used to eliminate the 
parameters {pi}. 

If the velocity (64) is supplemented by the term 

(&I, vo, Wo)T(l -6*)(1-q2)U - L 2 )  
then the pressure approximation on i? may be taken to be a linear function. The additional 
constraints 

1 J 1 < d i v q h  de = j j j  q divqh de = l j l [ d i v q h  de=O 
e e e 

provide equations with which to eliminate the parameters Uo, V, and Wo from the represen- 
tation. The average number of parameters per element in this case is the same as for (69) 
and (69’), both of which only have piecewise constant pressures. 
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